Chem. Ber. 114, 3855 - 3862 (1981)

Darstellung und Eigenschaften von und Reaktionen mit metallhaltigen Heterocyclen, XXI¹⁾

Ringkontraktion, Kristallstrukturen, Eigenschaften und Stabilität von Manganacycloalkanen

Ekkehard Lindner*, Guido Funk und Sigurd Hoehne

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen 1

Eingegangen am 25. März 1981

Das Manganacyclohexan-Derivat $(OC)_4$ MnPPh₂[CH₂]₄ (1) lagert sich beim Erwärmen im Einschlußrohr auf 100 °C in *n*-Hexan, wahrscheinlich über eine hydridische Alkenylstufe, zum ringverengten Cyclopentan $(OC)_4$ MnPPh₂CH₂CH₂CHCH₃ (2) um. 1 und 2 kristallisieren orthorhombisch bzw. monoklin in den Raumgruppen P2₁2₁2₁ bzw. P2₁/c mit Z = 4. In die Mn – C- σ -Bindung von 2 läßt sich CO und SO₂ einschieben unter Bildung der cyclischen Verbindungen $(OC)_4$ MnPPh₂CH₂CH₂CH(CH₃)CO (3) und $(OC)_4$ MnPPh₂CH₂CH₂CH(CH₃)SO₂ (4).

Preparation and Properties of, and Reactions with, Metal-Containing Heterocycles, XXI¹⁾ Ring Contraction, Crystal Structures, Properties, and Stability of Manganacycloalkanes

When the manganacyclohexane derivative $(OC)_4MnPPh_2[CH_2]_4$ (1) is warmed in a sealed tube to 100 °C in *n*-hexane it is changed, probably via a hydridic alkenyl step, to the ring-contracted cyclopentane $(OC)_4MnPPh_2CH_2CH_2CHCH_3$ (2). Crystals of 1 and 2 are orthorhombic and monoclinic, space groups $P2_12_12_1$ and $P2_1/c$, respectively, with Z = 4. In the $Mn - C \sigma$ bond of 2 CO and SO₂ can be inserted with formation of the cyclic compounds $(OC)_4MnPPh_2CH_2CH_2CH(CH_3)CO$ (3) and $(OC)_4MnPPh_2CH_2CH_2CH(CH_3)SO_2$ (4).

Bei der katalytischen Dimerisierung von substituierten Olefinen konnten Schrock et al.²⁾ Metallacyclopentane als Zwischenstufen spektroskopisch nachweisen. Die erhaltenen Dimerisierungsprodukte deuten auf eine Umlagerung der fünfgliedrigen Heterocyclen unter Ringkontraktion zu den äußerst labilen Metallacyclobutan-Derivaten hin, die in einem reduktiven Eliminierungsschritt die Kohlenwasserstoffe abspalten. Grubbs und Whitesides³⁻⁵⁾ diskutierten auch bei der Olefinmetathese die Bildung von Metallacycloaliphaten. In neuester Zeit wird vorgeschlagen, daß die Metathetisierung über einen ringverengten, viergliedrigen Methylidenkomplex verläuft, der dann unter Ringerweiterung wieder ein Metallacyclopentan liefert⁶⁾. Durch β -C-C-Spaltung und reduktive Eliminierung werden schließlich die isomerisierten Alkene freigesetzt. Mechanistische Schritte bezüglich der Ringkontraktion und die verengten Heterocyclen selbst wurden bislang nur aufgrund von Folgeprodukten postuliert. In Fortführung unserer

Chem. Ber. 114 (1981)

© Verlag Chemie GmbH, D-6940 Weinheim, 1981 0009 – 2940/81/1212 – 3855 \$ 02.50/0 Untersuchungen an stabileren P-haltigen Metallacycloaliphaten als Modellsubstanzen zum Nachweis katalytischer Vorgänge⁷⁻¹⁸⁾ versuchten wir eine solche Ringkontraktion an einem ausgewählten Beispiel nachzuvollziehen und das Reaktionsprodukt zu charakterisieren. Außerdem erscheint der Einfluß der Ringgröße und der Substituenten auf die Länge der Mn – C-Bindung und die Größe des Mn – C-Winkels von Interesse.

Resultate und Diskussion

Vor kurzem berichteten wir über die Synthese des Phosphamanganacyclohexans 1, das bei der Substitution von CO in BrMn(CO), durch Cl - [CH₂]₄ - PPh, und reduktive Cycloeliminierung des hierbei gebildeten Intermediats (OC), BrMnPPh, [CH,], Cl mit Natriumamalgam¹⁵⁾ entsteht. Weitere Versuche haben gezeigt, daß 1 bei längerem Erwärmen auf 100°C in Lösung (oder im Festzustand) zur irreversiblen Ringkontraktion unter Bildung des Cyclopentanderivats 2 neigt [Gl. (1)]. Wie bei Zersetzungsreaktionen rein carbocyclischer Metallverbindungen^{2,5)} dürfte auch hier die Reaktion durch β -H-Übertragung in 1, die über einen hydridischen Alkenylkomplex als Zwischenstufe verläuft, eingeleitet werden. Der dafür erforderliche MnCCH-Diederwinkel von 0° ^{19,20)} wird beim thermisch induzierten Konformationswechsel zweifelsohne ständig durchschritten. Anschließende intramolekulare Addition nach Markownikoff führt zum Cyclopentan 2, während Anti-Markownikoff-Addition Rückbildung des Edukts 1 bewirkt. Eine Ringkontraktion unter primärer α -C-C-Spaltung, wie sie bei Metathesereaktionen diskutiert wird⁶, läßt sich zwar nicht völlig ausschließen, ist aber unwahrscheinlich, zumal verschiedene Untersuchungen gezeigt haben, daß man ausgehend von Hydridoalkenylphosphan-21) bzw. -azan-Komplexen22) zu fünf- und sechsgliedrigen Ringgemischen gelangt. Mit der Ringverengung von 1 zu in 3-Stellung methyliertem 2 gelang uns erstmals ein indirekter Beweis für den von Schrock et al. formulierten Mechanismus²⁾.

In Übereinstimmung mit den unterschiedlichen Mn - C-Abständen in 2 und $(OC)_4MnPPh_2[CH_2]_3^{14,15}$ ist die Mn - C- σ -Bindung in 2 reaktiver als in der unsubstituierten Spezies. So liefert die CO-Insertion in 2 bereits unter merklich milderen Bedingungen das cyclische Acylderivat 3 [Gl. (2)]. Die Reaktion ist reversibel; schon bei

Raumtemperatur tritt in Lösung, schneller beim Erwärmen auf 50°C, vollständige CO-Eliminierung ein. Die Spaltung der Mn – C-Bindung mit SO₂ erfolgt bereits bei – 40°C und führt zum ringerweiterten Sulfinato-S-Komplex 4 [Gl. (3)].

Das farblose, im Hochvakuum sublimierbare Manganacyclopentan 2 und seine in unpolaren Solventien schwerer löslichen Insertionsprodukte 3 und 4 sind in ihren Eigenschaften den schon bekannten entsprechenden Heterocyclen^{15,17} in jeder Hinsicht an die Seite zu stellen.

Das Massenspektrum von 3 zeigt einen wenig intensiven Molekülpeak, da die Abspaltung des ersten CO-Moleküls nur geringe Energie erfordert. Das sich anschließende Fragmentierungsschema im Massenspektrum von 3 stimmt mit demjenigen des in 3-Stellung methylierten Heterocyclus 2 praktisch überein. Ausgehend vom Molekülpeak findet schrittweise CO-Eliminierung statt, erst dann folgt der Abbau des C-Gerüstes. Der monomere Aufbau des weniger flüchtigen heterocyclischen Sulfinato-Komplexes 4 ergibt sich aus einem Felddesorptions-Massenspektrum.

Die IR-Spektren von 2-4 (vgl. Tab. 1) sind im Bereich terminaler CO-Valenzschwingungen durch je vier scharfe Banden gekennzeichnet, wobei die C = O-Absorptionen der Insertionsprodukte 3 und 4 erwartungsgemäß bei höheren Frequenzen erscheinen. In den Spektren von 3 und 4 treten zusätzliche Absorptionen für v(>C=O) bzw. v_{as} und v_s(SO₂) auf, die jeweils in charakteristischen Bereichen liegen^{23,24}.

2	3	4	Zuordnung
2054 m - st a)	2070 m ^{b)}	2095 st ^{c)}	v(C≡O)
1984 st	2004 st	2038 st	
1970 sst	1971 sst	2002 sst	
1942 st - sst	1956 st – sst	1989 st	
	1610 m		$v(C = O)^{b}$
		1175 m	$v_{as}(SO_2)^{d}$
		1040 m	$v_s(SO_2)^{d}$

Tab. 1. Einige charakteristische Schwingungen (cm⁻¹) in den IR-Spektren der Heterocyclen 2-4

a) In *n*-Hexan. - b) In CCl₄. - c) In CH₂Cl₂/CCl₄ (1:1). - d) KBr.

1 ab. 2. 'H-NMR-Spektren (in CDCl ₃) der Heterocycle	n 2 - 4
--	---------

Verbindung	Chemische Verschiebungen δ (ppm)		Kopplungskonstanten J (Hz		
2	1.64 (d)	CHCH ₃	${}^{3}J_{\rm HH} = 7.1$		
	1.71 – 3.11 (m)	CHCH ₂ CH ₂			
	7.25-7.75 (m)	$P(C_6H_5)_2$			
3	0.93 (d)	СНС <i>Н</i> 3	${}^{3}J_{\rm HH} = 6.6$		
	1.51-2.98 (m)	CHCH ₂ CH ₂			
	7.44 – 7.81 (m)	$P(C_6H_5)_2$			
4	1.24 (d)	CHCH ₃	${}^{3}J_{\rm HH} = 6.6$		
	1.52 - 3.06 (m)	CHCH ₂ CH ₂			
	7.36-7.87 (m)	$P(C_6H_5)_2$			

Die Protonen der Methylgruppen von 2-4 beobachtet man im ¹H-NMR-Spektrum als signifikante Dubletts, die im Fall der Insertionsprodukte 3 und 4 durch die elektronenziehende Wirkung der CO- und SO₂-Gruppe bei tieferem Feld zu erwarten wären. Die tatsächlich beobachtete Hochfeldverschiebung (vgl. Tab. 2) läßt sich vermutlich mit einem magnetischen Anisotropie-Effekt der CO- bzw. SO₂-Gruppe erklären.

Im ¹³C{¹H}-NMR-Spektrum bewirkt die CH₃-Gruppe, wie beim Übergang von Cyclopentan zu Methylcyclopentan²⁵⁾, eine Verschiebung der Signale für die α - und β -ständigen ¹³C-Kerne von **2** im Vergleich zur nicht methylierten Spezies¹⁴⁾ um ca. 9 ppm nach tiefem Feld.

Die Lage der Resonanzen in den ${}^{31}P{{}^{1}H}-NMR-Spektren ist bei 2-4 direkt vergleich$ bar mit den chemischen Verschiebungen von entsprechenden Manganaheterocyclenohne CH₃-Seitengruppe^{15,17)}.

Mit Interplanarwinkeln von 26 bzw. 60° weist das Phosphamanganacyclohexan 1 eine verzerrte Sesselkonformation auf (vgl. Abb. 1). Mn(2) und C(5) weichen von der besten Ebene der anderen vier Ringatome um 64 bzw. 69 pm ab. In 2 befinden sich die Atome P(1), Mn(2), C(3) und C(5) sowie C(3) – C(5) in zwei Ebenen, die einen Interplanarwinkel von 43° bilden. Hieraus resultiert eine Briefumschlag-Konformation (vgl. Abb. 1). Das C(6)-Atom der Methylgruppe besetzt die äquatoriale Position und besitzt zu der aus C(3) – C(5) definierten Ebene einen Abstand von 26 pm.

Abb. 1. ORTEP-Bilder von (OC)₄MnPPh₂CH₂CH₂CH₂CH₂(1) (links) und (OC)₄MnPPh₂CH₂CH₂CHCH₃ (2) (rechts). Die thermischen Schwingungsellipsoide entsprechen 50% der Aufenthaltswahrscheinlichkeit

Während die Mn – P-Bindungen in 1 und 2 etwa gleich lang sind (vgl. Tab. 3) und im Bereich vergleichbarer anderer Heterocyclen gefunden werden^{10,17,18)}, gehören die Mn(2) – C(3)-Distanzen zu den längsten in Manganacycloalkanen bisher festgestellten Bindungen¹⁰⁾. In Übereinstimmung damit beobachtet man eine erhöhte Reaktivität hinsichtlich von Einschiebungsreaktionen mit Kohlenoxid bzw. Schwefeldioxid¹⁸⁾.

In 2 stimmen die Bindungswinkel an den aliphatischen C-Atomen etwa mit dem Tetraederwinkel überein; infolge des größeren Ringes sind sie in 1 hingegen deutlich aufgeweitet. Dies gilt in besonderem Maße für den Winkel $Mn(2) - C(3) - C(4) (122^{\circ})$, der zusammen mit dem Mn(2) - C(3)-Abstand darauf hinweist, daß hier die Stabilitätsgrenze von P- haltigen, chalkogenfreien Manganacycloalkanen erreicht sein dürfte¹⁰⁾. Vergleicht man diese Daten mit denjenigen des kürzlich durch Kristallstrukturbestimmung untersuchten Fünfrings $(OC)_4MnPPh_2[CH_2]_3^{14,15}$, so fällt auf, daß beide mit zunehmender Ringgröße schneller ansteigen als dies bei den chalkogenhaltigen Manganacycloalkanen, in denen die Stabilitätsgrenze erst beim Siebenring erreicht wird¹⁰⁾, der Fall ist. Bei dem in C(3)-Stellung eine Methylgruppe tragenden Fünfring 2 ist zwar der Mn(2) – C(3) – C(4)-Winkel von ähnlicher Größenordnung wie in $(OC)_4MnPPh_2[CH_2]_3^{14,15)}$, die Mn(2)–C(3)-Bindung erreicht jedoch den bisher größten, diesbezüglich festgestellten Abstand.

Bindung	1	1			Bindung	1	2 179.9(9) 179.5(10 180.6(9)	
P(1)-Mn	(2) 230.3	3(2)	228.0(2) 223.7(9)		Mn (2) -C (7)	179.9(9)		
Mn (2) - C	(3) 222.2	2(10)			Mn (2) - C (8)	182.8(9)		
C (3) -C (-	4) 149.6	149.6(16) 150.5(148.9(18) 152.5(152.2(15) 179.7(182.8(9)		(13)	Mn (2) - C (9)	181.6(9)		
C(4)-C(5) 148.9			i(11) Mn (2) - C (184.8(10)	182.2(11) 151.2(14) 115.0(8) 114.4(10)	
C(5)-C(6) 152.2				C(3)-C(6) 9) C(7)-O(7)			
C (5) - P (1)			(9)				
C(6)-P(1) 182.8			C(8)-O(8)		111.4(11)		
P(1)-C(11) 183.3	8 (8)	181.4	(7)	C(9)-O(9)	114.4(11)	113.1(9)	
P(1)−C(17) 182.1	(9)	179.0	(8)	C(10)-O(10)	112.6(12)	114.9(10)	
Winkel	1	2		Winkel	<u> </u>	1		
C(5)-P(1)-Mn(2)		104.	2(3)	P(1)-M	n (2) -C (10)	89.7(3)	89.3(3)	
2 (6) - P (1) - Mn (2)	114.2(3)			С(3)-М	n (2) - C (7)	175.7(4)	88.2(4)	
₽ (1) - Mn (2) - C (3)	90.8(2)	82.	2(3)	C(3)-M	n (2) - C (B)	85.0(4)	83.9(5)	
fin (2) - C (3) - C (4)	121.9(7)	112.	1(6)	C(3)-M	n (2) -C (9)	82.9(5)	177.2(3)	
C(3)-C(4)-C(5)	115.0(11)	112.	4 (8)	C(3)~M	n (2) -C (10)	82.2(4)	85.9(4)	
C(4)-C(5)-C(6)	115.5(9)			C(7)-M	n (2) - C (B)	91.7(3)	89.4(4)	
C(4)-C(5)-P(1)		106.	1 (6)	C(7)-M	n (2) -C (9)	99.9(4)	94.6(4)	
Mn(2)-P(1)-C(11)	119.1(2)	120.	7(3)	C(7)-M	n (2) -C (10)	95.2(4)	91.4(4)	
Mn (2) - P (1) - C (17)	114.8(2)	116.	3(2)	C (8)-M	n (2) -C (9)	90.7(4)	96.0(4)	
C(5)-P(1)-C(11)		105.	9(4)	C (8) -M	n (2) -C (10)	91.0(4)	169.7(4)	
C(6)-P(1)-C(11)	100.5(4)			C(9)-M	n(2)-C(10)	164.8(4)	94.1(4)	
C(5)-P(1)-C(17)		106.	3(5)	Mn (2) –	C(3)-C(6)		114.7(8)	
C(6)-P(1)-C(17)	106.0(4)			C(4)-C	(3)-C(6)		109.5(10)	
C(11)-P(1)-C(17)	100.2(3)	102.4	4(3)	Mn (2) - 4	C(7)-O(7)	177.7(8)	176.8(10)	
P{1)-Hn(2)-C(7)	92.6(2)	170.	3 { 3 }	Mn (2) ~	C{8}-0(8}	177.5(8)	176.3(9)	
P(1)-Mn(2)-C(8)	175.6(3)	88.	2(3)	Mn (2) -	C(9)-O(9)	178.0(7)	179.6(8)	
P(1)-Mn(2)-C(9)	87.4(2)	95.0	D(2)	Mn(2)-0	2(10)-0(10)	177.0(9)	178.7(9)	

Tab. 3. Einige Atomabstände [pm] und Winkel [Grad] in 1 und 2. (In Klammern Standardabweichungen in Einheiten der letzten Dezimalstelle)

Die in 1 und 2 jeweils *trans*-ständigen CO-Gruppen neigen sich wie in anderen cyclischen Systemen mit Metall-Kohlenstoff- σ -Bindungen^{18,26,27}) zum an das Metall σ gebundenen Kohlenstoffatom hin und bilden miteinander einen Winkel von 170 bzw. 166°.

Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, danken wir für die finanzielle Unterstützung dieser Untersuchungen. Außerdem sind wir der BASF-Aktiengesellschaft und der Schering AG für die Überlassung von wertvollem Ausgangsmaterial zu Dank verpflichtet.

Experimenteller Teil

Schwefeldioxid wurde mit P_4O_{10} , H_2SO_4 und Molekularsieb getrocknet und gereinigt. Die anderen Arbeitsschritte erfolgten unter N₂-Atmosphäre in getrockneten (Natrium, P_4O_{10} , Molekularsieb), frisch destillierten und N₂-gesättigten Lösungsmitteln. Die Umlagerung $1 \rightarrow 2$ erfolgt in einem

dickwandigen (2 mm) Einschlußrohr. IR-Spektren: Beckman IR 12; Spektrometer IFS 113c der Fa. Bruker. – Massenspektren: Varian MAT 711 A. – ¹H- und ³¹P-¹₄H¹₇-NMR-Spektren: Bruker WP 80 (Meßfrequenz 80 bzw. 32.39 MHz; int. Standard TMS bzw. ext. Standard 85proz. Phosphorsäure/D₂O). – Mikroelementaranalysen: Anlage der Fa. Carlo Erba, Modell 1104. – Manganbestimmungen: Atomabsorptionsspektralphotometer, Modell Beckman 1248. – Einkristallstrukturen: Automatisches Einkristalldiffraktometer CAD 4F-PDP 11/60 der Fa. Enraf-Nonius (Graphitmonochromator, monochromatische Cu- K_{α} - (1) und Mo- K_{α} -Strahlung (2).

1. 2,2,2,2-Tetracarbonyl-3-methyl-1, 1-diphenyl-1-phospha-2-manganacyclopentan (2): Eine Lösung von 118 mg (0.29 mmol) (OC)₄MnPPh₂[CH₂]₄ (1)¹⁵⁾ in 15 ml *n*-Hexan wird im Einschlußrohr auf 100°C erhitzt. Nach 6 d kühlt man auf Raumtemp. ab, entfernt das Solvens i. Vak. und reinigt 2 i. Hochvak. durch fraktionierende Sublimation bei 90°C. Ausb. 84 mg (71.2%). Schmp. 101°C. $-{}^{31}P_1^{(1}H_2^{-}NMR$ (CHCl₃): $\delta = 82.6$ (s). $-{}^{13}C_1^{(1}H_2^{-}NMR$ (CDCl₃): $\delta = 27.6$ (s, PCC); 32.1 (d, $J_{PC} = 28.1$; PCC); 32.8 (s, CCH₃); 40.1 (d, ${}^{2}J_{PC} = 13.7$; PMnC). -MS (70 eV): m/e = 408 (4%, M⁺), 380 (6%, M - CO), 352 (8%, M - 2 CO), 324 (13%, M - 3 CO), 296 (100%, M - 4 CO).

C₂₀H₁₈MnO₄P (408.3) Ber. C 58.84 H 4.44 Mn 13.46 Gef. C 59.12 H 4.50 Mn 13.28

2. 2,2,2,2-Tetracarbonyl-4-methyl-1, 1-diphenyl-1-phospha-2-mangana-3-cyclohexanon (3): Eine Lösung von 132 mg (0.32 mmol) 2 in 20 ml *n*-Hexan wird in einem 500-ml-Hochdruck-Rollautoklaven unter einem CO-Druck von 300 bar 24 h bei 80°C erhitzt. Nach Abkühlen und Öffnen des Autoklaven erhält man in *n*-Hexan unlösliches, farbloses 3. Ausb. 137 mg (97.1%). Schmp. 111°C (u. Zers.). $-{}^{31}P{}^{1}H{}$ -NMR (CHCl₃, -10°C): $\delta = 46.6$ (s). -MS (70 eV): m/e = 436(1%, M⁺), 408 (25%, M - CO), 380 (3%, M - 2 CO), 352 (19%, M - 3 CO), 324 (36%, M - 4 CO), 296 (100%, M - 5 CO).

C21H18MnO5P (436.3) Ber. C 57.81 H 4.16 Mn 12.59 Gef. C 57.63 H 4.10 Mn 12.21

3. Decarbonylierung von 3: Eine Lösung von 0.2 mmol 3 in 20 ml CCl₄ erwärmt man 0.5 h auf 50 °C. Dabei tritt CO-Verlust unter quantitativer Rückbildung von 2 ein. – MS (70 eV): m/e = 408 (5%, M⁺). – 1R (*n*-Hexan): 2054 m – st, 1984 st, 1970 sst, 1942 cm⁻¹ st – sst v(C \equiv O).

4. 2,2,2,2-Tetracarbonyl-6-methyl-3,3-diphenyl-1 λ^{5} -thia-2-mangana-3-phosphacyclohexan-S,Sdioxid (4): Auf 151 mg (0.37 mmol) 2 läßt man bei – 40 °C 1 h 20 ml flüssiges SO₂ einwirken. Nach dem Verdampfen von SO₂ erhält man 4 quantitativ und analysenrein. Ausb. 171 mg (97.9%). Schmp. 172 °C (u. Zers.). – ³¹P₁⁽¹H₁³-NMR (CHCl₃): $\delta = 28.4$ (s). – MS (Felddesorption, 8 kV): 472 (M⁺).

 $\begin{array}{c} C_{20}H_{18}MnO_6PS \ (472.3) \\ \text{Gef. C } 50.86 \ H \ 3.84 \ Mn \ 11.63 \ S \ 6.79 \\ \text{Gef. C } 50.80 \ H \ 3.75 \ Mn \ 11.44 \ S \ 6.45 \end{array}$

5. Kristallstrukturen von 1 und 2*): Einkristalle erhält man durch Umkristallisieren von 1 und 2 aus *n*-Hexan. Für die Strukturbestimmungen wurden Kristalle mit den ungefähren Abmessungen $0.6 \times 0.4 \times 0.1 \text{ mm}$ (1) bzw. $0.4 \times 0.3 \times 0.1 \text{ mm}$ (2) in Markröhrchen abgefüllt. Aus Buerger-Präzessionsaufnahmen ergab sich für 1 (orthorhombisch) die nicht-zentrosymmetrische Raumgruppe $P_{2_12_12_1}$ und für 2 (monoklin) die zentrosymmetrische Raumgruppe $P_{2_1/c}$. Gitterkonstanten von 1: a = 1476.6 (8), b = 1529.2 (3), c = 857.0 (2) pm, Z = 4, $d_{exp.} = 1.39$ g/cm³, $d_{ber.} = 1.401$ g/cm³; von 2: a = 845.2 (2), b = 1475.8 (6), c = 1598.6 (6) pm, $\beta = 103.78$ (2)°, Z = 4, $d_{exp.} = 1.39$ g/cm³, $d_{ber.} = 1.401$ g/cm³. Zur Auswertung der Strukturen wurden die Intensitäten

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50018, des Autors und des Zeitschriftenzitats angefordert werden.

von 1650 (1) bzw. 1866 (2) symmetrieunabhängigen Reflexen bis zu Θ -Werten von 55 bzw. 25° registriert. Die Lösung der Struktur von 1 gelang durch eine dreidimensionale Patterson-Synthese²⁸), aus der die Lage des Manganatoms ermittelt werden konnte. Nach deren Verfeinerung mit Hilfe der Methode der kleinsten Fehlerquadrate wurden die übrigen Atome durch Diffe-

Verbiniung 1: Der Temperaturfaktor ist gegeben durch den Ausdruck T = exp $\left[-2\pi^2 (U_{11}h^2a^2 + U_{22}k^2b^{*2} + U_{22}h^2b^{*2} + U_$										
$U_{33}1^{\circ}c^{\circ} + 2U_{23}k1b^{\circ}c^{\circ} + 2U_{13}h1a^{\circ}c^{\circ} + 2U_{12}hka^{\circ}b^{\circ}$). Die Temperaturparameter sind in pm ² angegeben										
Atom	x/a	у/ь	z/c	U 13	U22	U	U23		U 13	U ₁₁
P(1)	0.1218(1)	0.2692(1)	0.0870(2)	483 (9)	324(8)	509 (9)	-2	(7)	46(8)	-11(6)
Mn {2}	0.1440(1)	0.4183(1)	0.0902(1)	539(6)	330(6)	518(6)	-14	(5)	18(5)	33(5)
C(3)	-0.0020(6)	0.4403(6)	0.1397(14)	647(51)	473(47)	1078(75	5) 106	(46)	248(49)	133(38
C(4)	-0.0559(8)	0.3786(8)	0.2384(17)	717(69)	777(69)	11'9(90	21	(64)	413(66)	127(53
C(5)	-0.0611(7)	0.2874(9)	0.1784(16)	498 (57)	726(69)	12.4(1)	1) 192	(71)	164 (55)	-71 (47
C (6)	0.0239(6)	0.2326(6)	0.2001(12)	661(49)	571(49)	758(60)) 111	(43)	203 (43)	41 (39
C(7)	0.2619(6)	0.4076(5)	0.0410(10)	654(51)	325(35)	791(52	2) 65	(33)	-24(39)	-29(33
0(7)	0.3374(4)	0.4024(5)	0.0048(11)	571(37)	687(43)	1438(67	250	(42)	183(37)	23(30
C(8)	0.1533(5)	0.5374(6)	0.1007(13)	558(43)	547(52)	1068(71) -84	(50)	~7(53)	125 (36
0(8)	0.1561(5)	0.6101(4)	0.1047(11)	1172(56)	262(30)	1453(69) -41	(34)	48(56)	63(30)
C(9)	0.1511(7)	0.4105(5)	0.3013(10)	1039(68)	368(39)	626(54	-25	(33)	3(45)	44 (43
0(9)	0.1551(7)	0.4030(5)	0.4339(8)	1786(87)	871(53)	565 (44	-133	(33)	-118(45)	-41(54)
C(10)	0.1041(6)	0.4247(6)	-0.1139(11)	781(51)	492(43)	672 (52	46	(41)	-5(42)	121(38)
0(10)	0.0762(6)	0.4294(5)	-0.2359(9)	1358(66)	968(52)	683(42) -14	(40)	-116(45)	362 (49)
C(11)	0.2100(5)	0.1975(5)	0.1661(9)	540(41)	459(38)	550(41) 50	(32)	76(33)	64(32)
C(12)	0.2046(7)	0.1101(5)	0.1456(14)	785(57)	392(39)	1122(77) 87	(44)	-13(54)	130(40)
C(13)	0.2699(9)	0.0538(7)	0.2111(19)	1037(82)	501(54)	1521(12	2) 169	(63)	180(89)	219(55)
C(14)	0.3423(7)	0.0866(7)	0.2885(14)	744(61)	787(69)	1060(79) 391	(59)	133(56)	230(53)
C(15)	0.3500(7)	0.1746(8)	0.3121(12)	703(59)	889(76)	731(60) 275	(50)	4(48)	122(52)
C(16)	0.2834(5)	0.2311(5)	0.2484(11)	560(43)	548 (44)	656(47) 123	(40)	-30(37)	65(35)
C(17)	0.1084(5)	0.2219(4)	-0.1066(10)	689(44)	316(32)	675 (46) -109	(34)	-94 (40)	~15(30)
C(18)	0.1778(7)	0.2335(6)	-0.2079(11)	820(57)	647(53)	610(50) -96	(41)	84 (43)	-130(44)
C(19)	0.1697(11)	0.1965(9)	-0.3571(13)	1516(129)	798(67)	529(52) -114	(48)	231(65)	90(85)
C(20)	0.1035(12)	0.1484(7)	-0.4041(13)	1662(114)	592(57)	592(54) -105	(50)	-289(74)	262(63)
C(21)	0.0294(11)	0.1354(8)	-0.3001(17)	1331 (106)	811(76)	1031(10	0) -179	(64)	-542(89)	-107(69)
C(22)	0.0328(8)	0.1737(6)	-0.1494(14)	757(58)	590(52)	963(68) -78	(49)	-138(53)	- 106 (46)
Verbin	dung 2: Der	Temperaturf	nktor ist dea	eben durch	den Ausd	ruck: T =	exp (-(B	$h^2 + B$		2 +
B, hk	+ B, , h1 + B,	, k1)]. Die '	Temperaturpar	ameter (als	10 ⁴ -fach	e Werte a	ngogeben)	sind dir	ensionslo	
12	15 2			_		_			_	
Atom				^B 11 E	22	B_33	B ₁₂	^B 13	B ₂₃	
P(1)	0.63/3(2)	0.1046(1)	0.2594(1)	152(2)	32(1)	39(1)	- (3(3)	50(2)	1(1)	
Mn (2)	0.6945(1)	0.1030(1)	0.4061(1)	196(1)	45(1)	39(1)	28(2)	33(1)	-4(1)	
0(3)	0.7688(7)	0.2461(3)	0.3894(3)	289(14)	44(3)	61(3)	-36(12)	31(11)	-31(5)	
0(4)	0.7163(6)	0.2768(3)	0.29/1(3)	267(12)	25(3)	/8(3)	-28(10)	86(10)	-10(5)	
0(0)	0.7411(6)	0.2036(3)	0.2341(3)	225(10)	44(3)	42(2)	-54(11)	60(6)	-2(5)	
0(6)	0.7121(8)	0.3142(4)	0.4468(3)	437(17)	64(4)	/1(3)	-01(10)	01(14)	-4/(6)	
0(7)	0.7553(8)	0.1201(4)	0.5208(3)	362(14)	37(4)	61(3)	111(13)	23(12)	3(6)	
0(7)	0.8017(7)	0.1307(3)	0.5938(2)	650(13)	127(4)	42(1)	207(13)	0(9)	-48(5)	
0(8)	0.9032(6)	0.0779(4)	0.4080(3)	208(12)	00(4)	52(2)	40(12)	-39(10)	2(5)	
0(8)	1.0385(5)	0.0664(3)	0.4080(3)	193(9)	(12(3)	114(2)	20(11)	4(0)	20(5)	
0(9)	0.6321(7)	-0.0132(3)	0.4139(3)	322(14)	61(3)	31(2)	51(0)	103(9)	12(5)	
0(9)	0.5939(3)	-0.0860(2)	0.4190(2)	335(10)	40(2) 51(3)	95(2)	-31(9)	236(7)	0(5)	
0(10)	0.4917(7)	0.1491(3)	0.4015(3)	294(13)	105 (3)	39(2)	-23(11)	19(9)		
C(11)	0.3051(5)	0.1790(3)	0.4001(2)	205(0)	105(3)	10(2)	-15(9)	(23(7) 63(B)	-4(4)	
C(12)	0.7765(6)	-0.0636(3)	0.2000(3)	260(12)	50(3)	40(2)	39/11	03(0)	-4(4)	
C (12)		-0.0636(3)	0.1916(3)	263/121	44(2)	75(2)	46(11)	105(11)	17/51	
C(14)	0.8020(7)	-0.1316(3)	0.1910(3)	203(14)	52(2)	(2) (2)	46(11)	102(9)	-26(5)	
CUS	0.0020(7)	-0.1234(3)	0.0040(3)	237(10)	71/31	45(3)	-20(12)	102(9)	-20(5)	
C (16)	0.7207(0)	0.0302(4)	0.0000(3)	201(12)	51(3)	41(2)	19(11)	50(9)	- 33 (3)	
C(17)	0.4265(5)	0.1179(3)	0.2051(2)	177 (9)	39(3)	37(7)	2(10)	46(7)	-1(3)	
C(18)	0.3655(6)	0.1912(3)	0.1565(2)	183(11)	52(3)	41(2)	17(11)	-12(9)	-14(5)	
C(19)	0.2030(7)	0.1984(4)	0.1182(3)	272(13)	72(4)	56(3)	97(13)	37(11)	2(6)	

123(10) 136(6)

87(4)

68(3)

186(12)

167(11)

0.2140(3)

68(3)

90(4)

63(3)

68(13)

-59(13)

-26(11)

9(10)

43(11)

35(10)

Tab. 4. Ortskoordinaten (in Einheiten der Elementarzelle) und Temperaturfaktoren (1n Klammern Standardabweichungen in Einheiten der letzten Dezimalstelle)

Chem. Ber. 114 (1981)

0.3172(7)

C(21)

C (22)

C(20) 0.0997(6) 0.1320(4) 0.1281(3)

0.1548(7) 0.0571(4) 0.1765(3)

0.0505(4)

-48(7)

-10(7)

13(5)

renz-Fourier-Synthesen lokalisiert und mit anisotropen Temperaturparametern und Einheitsgewichten für alle Atome zu R = 0.120 verfeinert. Da sich trotz Einführung der Wasserstoffatomlagen der R-Wert wegen der ungünstigen Kristallabmessungen nicht weiter senken ließ, wurde eine Gewichtung durchgeführt, deren Faktor zu 0.031 verfeinert wurde. Die endgültigen R-Werte betragen R = 0.103 und $R_W = 0.097$. Bei 2 gelang die Lösung der Struktur mit den direkten Methoden²⁹, wobei sich die Positionen von Mangan, Phosphor und einiger Carbonyl-Kohlenstoff- und Sauerstoffatome bestimmen ließen. Die Lage der übrigen Atome ergab sich durch Verfeinerung mit Einheitsgewichten und anschließende Differenz-Fourier-Synthesen. Nachdem auch die Wasserstoffatome lokalisiert und anisotrope Temperaturparameter für alle übrigen Atome eingeführt wurden, konvergierte der R-Wert zu 0.072.

Die Strukturfaktoren wurden mit den Atomformfaktoren für neutrale Atome³⁰⁾ und den in Tab. 4 angegebenen Atomparametern berechnet. Listen mit den beobachteten (F_0) und berechneten (F_c) Strukturfaktoren können bei den Autoren angefordert werden.

- ³⁾ R. H. Grubbs und T. K. Brunck, J. Am. Chem. Soc. 94, 2538 (1972).
- ⁴⁾ R. H. Grubbs, P. L. Burk und D. D. Carr, J. Am. Chem. Soc. 97, 3265 (1975).
- ⁵⁾ J. X. McDermott, M. E. Wilson und G. M. Whitesides, J. Am. Chem. Soc. 98, 6529 (1976).
- ⁶⁾ J. Levisalles, H. Rudler und D. Villemin, J. Organomet. Chem. 193, 69 (1980).
- 7) E. Lindner, G. von Au und H.-J. Eberle, Z. Naturforsch., Teil B 33, 1296 (1978).
- ⁸⁾ E. Lindner und H.-J. Eberle, Angew. Chem. 92, 70 (1980); Angew. Chem., Int. Ed. Engl. 19, 73 (1980).
- 9) E. Lindner und H.-J. Eberle, J. Organomet. Chem. 191, 143 (1980).
- ¹⁰⁾ E. Lindner, H.-J. Eberle und S. Hoehne, Chem. Ber. 114, 413 (1981).
- ¹¹⁾ E. Lindner und G. von Au, Angew. Chem. 92, 843 (1980); Angew. Chem., Int. Ed. Engl. 19, 824 (1980).
- ¹²⁾ E. Lindner und G. von Au, Z. Naturforsch., Teil B 35, 1104 (1980).
- ¹³⁾ E. Lindner und G. von Au, J. Organomet. Chem. 202, 163 (1980).
- ¹⁴⁾ E. Lindner, G. Funk und S. Hoehne, Angew. Chem. 91, 569 (1979); Angew. Chem., Int. Ed. Engl. 18, 535 (1979).
- ¹⁵⁾ E. Lindner, G. Funk und S. Hoehne, Chem. Ber. 114, 2465 (1981).
- ¹⁶⁾ E. Lindner, G. Funk und F. Bouachir, Chem. Ber. 114, 2653 (1981).
- 17) E. Lindner, G. Funk und S. Hoehne, J. Organomet. Chem. 214, C7 (1981).
- ¹⁸⁾ E. Lindner und G. Funk, J. Organomet. Chem., im Druck.
- ¹⁹ J. X. McDermott, J. F. White und G. M. Whitesides, J. Am. Chem. Soc. 95, 4451 (1973).
- ²⁰ J. Y. Merour, C. Charrier, J. Benaim, J. C. Roustan und D. Commereuc, J. Organomet. Chem. 39, 321 (1972).
- ²¹⁾ M. A. Bennett und R. Watt, J. Chem. Soc., Chem. Commun. 1971, 94.
- ²²⁾ M. J. Calhorda und A. R. Dias, J. Organomet. Chem. 198, 41 (1980).
- ²³⁾ G. Vitzthum und E. Lindner, Angew. Chem. 83, 315 (1971); Angew. Chem., Int. Ed. Engl. 10, 315 (1971).
- ²⁴⁾ A. Wojcicki, Adv. Organomet. Chem. 12, 31 (1974).
- ²⁵⁾ E. Breitmaier und W. Voelter, ¹³C NMR Spectroscopy, 2. Aufl., S. 134, Verlag Chemie, Weinheim, New York 1978.
- ²⁶⁾ U. Schubert und A. Rengstl, J. Organomet. Chem. 166, 323 (1979).
- ²⁷⁾ A. J. Carty, G. N. Mott und N. J. Taylor, J. Organomet. Chem. 182, C69 (1979).
 ²⁸⁾ Programmsystem SHEL-76 von G. Sheldrick, Universität Cambridge 1976; Rechenanlage TR 440 des Zentrums für Datenverarbeitung der Universität Tübingen.
- ²⁹⁾ Programmsystem SDP (Firma Enraf-Nonius).
- 30) D. T. Cromer und J. B. Mann, Acta Crystallogr., Sect. A 24, 321 (1968).

[114/81]

¹⁾ XX. Mitteil.: E. Lindner und A. Rau, J. Organomet. Chem., im Druck.

²⁾ S. J. McLain, J. Sancho und R. R. Schrock, J. Am. Chem. Soc. 101, 5451 (1979); 102, 5610 (1980).